Roll No. Total No. of Pages : 0)2
B.Tech. (IT) (2018 Batch) (Sem.–3) MATHEMATICS-III Subject Code : BTAM-304-18 M.Code : 76393	
Fime : 3 Hrs. Max. Marks : 60	
 INSTRUCTIONS TO CANDIDATES : SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions. 	
SECTION-A	
Write brief :	
1. Express $w' = and w' = in$ terms of r and s if $w = x + 2y + z^2, x = \frac{r}{s}, y = r^2 + \ln s, z = 2r$	
2. Show that the function $f(x,y) = \begin{pmatrix} 0 & 2xy \\ 0 & 2xy \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x,y \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x,y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x,y \\ 0 & 0 \end{pmatrix}$	
is not continuous at origin.	
3. Find the local extreme values of the function $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$	
4. Define convergence of a sequence and give an example of a convergent sequence	e.
5. State Leibniz's test for alternating series.	
6. Determine for what values of a and b , the following differential equation is exact	t.

$$(y+x^3)dx + (ax+by^3)dy = 0$$

7. Find the integrating factor for the following differential equation

$$(5x^3 + 12x^2 + 6y^2)dx + 6xydy = 0$$

1 M-76393

(S2)- **540**

Download all NOTES and PAPERS at StudentSuvidha.com

- 8. Give an example of a fourth order linear differential equation.
- 9. Find the solution of the differential equation $y = 4y^2 12y = 0$
- 10. If y_1 and y_2 are two linearly independent solutions of a second order linear differential equation, then what can you say about the general solution of this equation. Justify your answer.

SECTION-B

- 11. Find the volume of the region in the first octant bounded by the coordinate planes and the planes x + z 1 and y + 2z = 2.
- 12. For what values of *x* does the following power series converge ?

$$\sum_{\substack{n \equiv 1 \\ n \equiv 1}}^{n \equiv 1} (\Box 1)^{n \Box 1} \frac{x^{2n \Box 1}}{2n \Box 1}$$

13. Obtain the general solution and singular solution of the non-linear equation

$$y = xy / - (y)^3.$$

- 14. Solve the differential equation \overleftarrow{p} + 16y = 32 sec 2x by using method of variation of parameters.
- 15. If $a_n \mid$ converges, then show that $a_n \mid a_n$ also converges. Is the converse also true? Justify your answer also true?

SECTION-C

- 16. Find the extreme, values of the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints $x^2 + y^2 1 = 0$ and x + y + z = 1.
- 17. Test the convergence of the series (i) $\prod_{n \equiv 1}^{n} (\square 1)^n \frac{\ln n}{n \equiv \ln n}$ (ii) $\prod_{n \equiv 1}^{n} \frac{8 \tan^{\square 1} n}{1 \equiv n^2}$
- 18. Find the general solution of the equation $y = 4y^{1} + 13y = 18e^{2x} \sin 3x$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76393

(S2)- 540

Download all NOTES and PAPERS at StudentSuvidha.com